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1740 QUARTERLY REPORT 

I. Contamination Control Study (NASA Contract No. H-13245A) 

A.  Description. This p ro jec t  involves preparat ion of the  NASA CON- 

TAMINATION CONTROL HANDBOOK. The handbook assembles i n  one docu- 

ment r e l i a b l e  t echn ica l  information and da ta  and o the r  information 

p e r t i n e n t  t o  the  f i e l d  but no t  r e a d i l y  a v a i l a b l e  from any one 

source. I t  f u r t h e r  provides p r a c t i c a l  information appl icable  t o  

s p e c i f i c  contamination con t ro l  s i t u a t i o n s  . 

Included i n  t h i s  study a c t i v i t y  i s  the add i t iona l  requirement t o  

r ev i se  and expand Section 8 and 9 of the  handbook a s  o r i g i n a l l y  

submitted t o  the Marshall Space F l i g h t  Center (MSFC) las t  qua r t e r .  

This i n  turn  necess i t a t ed  revis ions t o  the  Index page and the 

Glossary. The a d d i t i o n a l  work described above w a s  authorized by 

Amendment No. 4 t o  the NASA c o n t r a c t ,  which extended the con t r ac t  

completion d a t e  t o  June 3 0 ,  1969. 

B .  Progress.  The l e v e l s  o f  accomplishment during the qua r t e r  a r e  

i l l u s t r a t e d  by the following a c t i v i t i e s :  

1. Extensive research was conducted in the areas of: (1) Clean 

packaging materials, including their characteristics uses 

and methods of application, and (2) activities involved in 
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maintaining product c leanl iness  through handling, s torage ,  

t r anspor t  and f i e l d  operat ions.  During t h i s  phase of t h e  

p r o j e c t ,  d iscussions were held with representa t ives  of  t h e  

following NASA agencies and companies: 

Manned Spacecraft  Center,  Houston , Texas 

Kennedy Space Center,  Cape Kennedy, F lor ida  

TRW, Inc . ,  Redondo Beach, Ca l i fo rn ia  

North American Rockwell Corporation, 
Cape Kennedy, F lor ida ,  and Downey and Canoga Park, 
Cal i forn ia  

Grumman Ai rc ra f t  Co. , Cape Kennedy, F lor ida  

McDonnell-Douglas Corp., Cape Kennedy, Flor ida 

The Richmond Corporation, Redlands, Cal i forn ia  

2. The information developed w a s  reviewed and v e r i f i e d  when neces- 

s a ry ,  and assembled i n t o  t h e  standard handbook format. With t h e  

addi t ion  of t h e  new ma te r i a l  which provides comprehensive coverage 

of these  sub jec t s ,  Sect ion 8 w a s  expanded from 10 t o  43 pages and 

Section 3 from 3 t o  7 pages. I n  order t o  more appropr ia te ly  descr ibe 

t h e  revised material, t h e  t i t l e  of Sec t ion  8 w a s  changed from 

Packaging t o  Clean Packaging and t h e  t i t l e  of Sect ion 9 w a s  

changed from Handling and Storage t o  Maintaining Product Clean- 

l i n e s s .  

3. A rev ised  Index page f o r  t h e  e n t i r e  handbook w a s  prepared. 

4 



4.  The rev is ion  of  the Glossary, Sect ion 11, w a s  completed by 

adding a number of new t e r m s .  

5 .  A l l  of the revised ma te r i a l  mentioned above has been typed 

on masters and again reviewed f o r  technica l  and e d i t o r i a l  

correctness .  

f o r  NASA about January 6 ,  1969. 

Preliminary pr in ted  copies  w i l l  be ava i l ab le  

A s  a matter  of information on the  progress of  the  f i r s t  p r in t ing  of 

the handbook by MSFC, t h e  following information i s  provided: 

1. NASA Tech Br ie f  68-10392, descr ib ing  the  handbook and i t s  

a v a i l a b i l i t y ,  was d i s t r i b u t e d  i n  l a t e  November 1968. 

2 .  Two hundred copies were prepared on the  f i r s t  p r in t ing  by 

MSFC . 
3 .  Requests f o r  copies  r e s u l t i n g  from the Tech Brief  had 

exceeded the  number ava i l ab le  by about December 20. 

4.  A second p r in t ing ,  which w i l l  incorporate  a l l  of the  

revised ma te r i a l ,  i s  an t i c ipa t ed  i n  l a t e  January 1969. 
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11. Bioburaen Experimentation and Modeling 

A. Descr ipt ion.  Models f o r  t h e  est imat ion of  spacecraf t  bioburdens 

have been developed f o r  use i n  "d i r ty"  a reas  assoc ia ted  with manned 

luna r  missions ( see  QR 10). Three areas of  a c t i v i t y  remain. F i r s t ,  

t h e s e  models should be compared with d a t a  taken i n  highly con t ro l l ed  

experimental  s i t u a t i o n s  which have, a t  t h e  same t i m e ,  s u f f i c i e n t  

f l e x i b i l i t y  t o  allow model parameters t o  be a l t e r e d  and measured 

and a r e  reasonably accurate  representa t ions  of  spacecraf t  contamina- 

t i o n  s i t u a t i o n s .  Secondly, a p red ic t ive  bioburden model must be 

developed f o r  use i n  r e l a t i v e l y  "d i r ty"  environments, and t h i s  must 

be cons is ten t  with d a t a  obtained i n  similar highly con t ro l l ed  

experimental  s i t u a t i o n s .  F i n a l l y ,  t h e  models need t o  be r e f ined  and 

expanded for use i n  "clean" environments for ul t imate  use i n  

p lane tary  programs. 

s e l e c t i o n  and y i e ld ing  da ta  f o r  v e r i f i c a t i o n  o f  t h e s e  l a t te r  models 

i s  needed. 

An experimental  program guiding parameter 

B. Progress. I n  order  t h a t  physical  d a t a  be ava i l ab le  f o r  model 

v e r i f i c a t i o n  i n  each of t h e  cases  mentioned above, a r e c i r c u l a t i n g  

downflow u n i t  with t h e  following p rope r t i e s  w a s  des i red .  The u n i t  

should be designed s o  t h a t :  

1. Uniform a i r f low i n  a downward d i r e c t i o n  i s  provided t o  s imulate  

a i r f low condi t ions i n  laminar downflow c l ean  rooms. 

2. Test  p a r t i c l e s  can be added t o  t h e  a i r s t r eam so  t h a t  they  a r e  

uniformly d i s t r i b u t e d  throughout t h e  t es t  area, and constant  
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p a r t i c l e  d e n s i t i e s  a r e  maintained f o r  t h e  dura t ion  of  a given 

tes t  which may run t o  seve ra l  hours. 

3. T e s t  p a r t i c l e  s i z e s  and concentrat ions can be var ied  t o  meet 

t e s t  requirement condi t ions.  

Tes t  p a r t i c l e s  "tagged" with t r a c e r  organisms can be used as 

t h e  tes t  p a r t i c l e s  descr ibed above. 

4. 

5 .  The t e s t  a r e a  be s u f f i c i e n t l y  l a r g e  not t o  b i a s  experiments due 

t o  boundry a i r f low dis turbances.  

Such a u n i t  has been designed and i s  now opera t iona l .  This u n i t  

has an 8'  x 8 '  x 8 '  space a v a i l a b l e  f o r  t e s t  sur face  exposure. It 

a l s o  has a c a p a b i l i t y  of  va r i ab le  ve loc i ty  a i r f low up t o  150 feet/ 

minute. The acous t ic  p a r t i c l e  disseminator  descr ibed i n  Sandia 

Report QR-9, June 1968, w a s  i n s t a l l e d  and t e s t e d  i n  the  r e t u r n  

and plenum of t h e  r e c i r c u l a t i n g  u n i t .  

Aluminum oxide p a r t i c l e s ,  t e n  microns i n  s i z e ,  were used t o  t e s t  

performance of t h e  downflow u n i t .  A modified Royco p a r t i c l e  counter 

w a s  used t o  t e s t  p a r t i c l e  concentrat ions f o r  5 microns arid l a r g e r  

p a r t i c l e s .  

per  cubic foot  with l e s s  than  10% p a r t i c l e  count v a r i a t i o n .  

u n i t  and dust  feeder have been operated f o r  per iods of s eve ra l  hours 

a t  concentrat ion l eve l s  as high as 11,000 p a r t i c l e s  per  cubic foo t .  

Data f o r  a t y p i c a l  t e s t  run of  20 minutes was 3000 p a r t i c l e s  

The 

The alurninum oxide p a r t i c l e s  w i l l  be tagged with Baci l lus  s u b t i l i s  

spores  a s  t h e  t es t  organism f o r  t h e s e  t e s t s .  

u t i l i z i n g  mechanical mixing as described i n  Sandia Report QR-9, 

June 1968, i s  being used. 

The "tagging" technique 
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Current ly ,  t h e  behavior of t h e  u n i t  is  being s tudied  over l a r g e  ranges 

of  values f o r  a i r f low ve loc i ty ,  p a r t i c l e  s i z e ,  p a r t i c l e  dens i ty  and 

percentage of tagged p a r t i c l e s .  It should be poss ib le  t o  obta in  data 

f o r  use i n  t h e  v e r i f i c a t i o n  of t h e  models reported i n  QR-10 i n  t h e  

near  fu ture .  

A p red ic t ive  bioburden model, as t h e  phrase i s  used here ,  should be 

d is t inguished  from an es t imat ive  model. 

models which est imate  bioburdens on sur faces  do so at some point  i n  

t i m e  based upon sur face  samples taken a t  t h a t  point  i n  time. 

Predic t ive  models can p red ic t  bioburdens i n  two ways. The burden 

may be predicted at a given poin t  i n  t i m e  based upon a pas t  es t imate  

and subsequent environmental samples, o r  t h e  burden at some fu tu re  

point  i n  time may be predicted based upon a pas t  or curren t  bioburden 

The d i s t i n c t i o n  i s  tha t  

estimate and cur ren t  and pas t  environmental data taken i n  areas 

where t h e  sur face  w i l l  be loca ted  before  t h e  fu tu re  time a t  which t h e  

pred ic t ion  i s  required.  A preliminary vers ion of  a model t o  pred ic t  

i n  both these ways, f o r  use i n  "d i r ty"  environments, has  been completed. 

III.SLA, I U  and SIVI3 Contamination Calculat ions 

A. Description. The SLA, I U  and SIVa por t ions  of  any Apollo mission 

a r e  unl ike ly  t o  come i n t o  contact  with t h e  lunar sur face .  On t h e  

o ther  hand, should they do so, t hese  por t ions  may present  a contamina- 

t i o n  s i t u a t i o n  r a t h e r  d i f f e r e n t  from previous unmanned hardware 

impacting t h e  moon. This d i f fe rence  arises i n  p a r t  from t h e  d i f fe rence  

i n  s i z e ,  but more importantly from t h e  f a c t  t h a t  impact l oca t ion  i s  

not l i k e l y  t o  be known. Under these  circumstances,  it was desirable 
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t o  have a better understanding of  t h e  poss ib l e  e f f e c t s  t h a t  t e r r e s t r i a l  

organisms on t h e  SLA, I U  and SIVB might have on subsequent lunar  

explorat ion.  

B. Progress.  Using t h e  previous ana lys i s  done by M.S. Tierney ("The 

Chances of Re t r i eva l  of Viable Microorganisms Deposited on t h e  Moon 

by Unmanned Lunar Probes", Sandia Laboratories Monograph, SC-M- 

68-539) estimates were made of t h e  d i s p e r s a l  of fragments of t h e  

SLA, SIVB and I U  upon impact wi th  t h e  lunar sur face .  

t h a t  only t h e  burial  of contaminated fragments posed a p o t e n t i a l  

long term contamination hazard ( s e e  r e fe rence ) .  Thus, t h e  zones 

i n  which SLA, SIVB or I U  fragments may r e s ide  are, long term, t h e  

areas of concern t o  p lane tary  quarantine.  

It w a s  judged 

If s represents  t h e  d is tance  from impact of a SLA, SIVB or I U ,  then 

t h e  p robab i l i t y  of a fragment ly ing  at or beyond s , denoted p(L s )  , 

f r o m t h e  impact s i t e  of any of t hese  may be ca lcu la ted  as a funct ion 

of t h e  following parameters : 

1. M, t h e  mass of t h e  spacecraf t  por t ion ,  

2. 

3. FKB, t h e  f r a c t i o n  of  k i n e t i c  energy imparted t o  t h e  fragments 

4. 

5 .  NF, t h e  number of fragments. 

V I ,  t h e  impact ve loc i ty  of t h e  spacecraf t  po r t ion ,  

MO, t h e  mass of t h e  smallest fragment, and 

Impact ve loc i ty  w a s  assumed t o  be t h e  escape ve loc i ty  ( -  2.6 x 10 5 cm/sec) , 
8 M w a s  var ied between 5 x l o 6  and 1 x 10  grams. Based upon t h e  above 
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-4 r e p o r t ,  F U  w a s  s e t  a t  1 x 1 0  . The values  of  MO were var ied  about 

0.2 grams based upon the results of high v e l o c i t y  rocket  impact i n  

basalt and NF var ied  between 1 x 10  and 1 x 10 . Typical r e s u l t s  

obtained a r e  shown i n  the following t a b l e s .  

and M/NF i s  used as a parameter s ince  t h e  model dependence i s  upon 

t h i s  r a t i o  r a t h e r  than i t s  ind iv idua l  components i n  t h e  ranges d i s -  

cussed above. 

Table 1: M/NF = 10 ( g m ) ,  MO = 0.2 (gm) 

6 8 

Here p ( <  s )  = 1 - p ( 1  s ) ,  

0.01 
0.10 
1.00 
2.00 

10.00 
20.00 
50.00 

100.00 
200.0 
300.00 
400.00 

5.00 

0.0240092938 
0.1981088311 

0.8439226322 

0.9753034403 
0.9921656748 
0.9992247444 
0 9999607904 

0.7205374680 

0.9396992231 

0 9999997586 
0.9999999975 
0.9999999999+ 

Table 2: M/NF = 1 ( g m ) ,  MO = 0.2 ( g m )  

0.01 
0.10 
1.00 
2.00 

10.00 
20.00 
30.00 
40.00 

5.00 

0.0282350311 
0.2321586643 
0.8188939567 
0.9344357668 
0.9930904084 
0 996737156 
0 9999985982 
0.9999999919 
0.9999999999 
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8 From t h e  tables it may be seen t h a t  i f  one has no more than  1 0  

fragments, then  f o r  1 5 M/NF 5 10 ( g m )  t h e  expected number of frag- 

ments l y i n g  beyond 300 km from t h e  poin t  of impact i s  less than one. 

Thus, c e r t a i n l y  ou t s ide  of a c i r c l e  of a conservat ive r ad ius  of 

300 km about t h e  impact po in t  of a SLA, SIVB or I U  long term 

contamination would appear t o  be no problem. The comparable f igu re  

f o r  smaller unmanned probes given i n  t h e  above referenced document 

i s  60 km based on experimental d a t a  suggesting an M/NF r a t i o  of a t  

most a few grams f o r  comparable s i z e  rockets .  Since similar data 

f o r  rocke ts  t h e  s i z e  of a SIVB a r e  not ava i l ab le  it is  poss ib le  t h a t  

60 km i s  a reasonable value for it and t h e  SLA as wel l .  

The l ike l ihood of  t h e  impact of a SLA, SIW or I U  appears t o  be 

unknown ( " re l i ab le"  es t imates  varying from about t o  0.38) and 

should one of these i t e m s  impact t h e  moon, t h e  loca t ion  of  t h e  impact 

s i t e  w i l l  a l s o  probably not be recorded. 

Under these  condi t ions it i s  reasonable t o  ask  what e f f e c t  t h e i r  

impact might have upon b io log ica l  explorat ion.  

assess ing  t h i s ,  Table 1 may be extended t o  y i e l d  approximate organism 

d e n s i t i e s  about a lunar  impact po in t .  Based upon an est imate  of 1 0  

organisms on a SLA, SIVB or I U  at  impact (which i s  high, based on 

PHS data taken at Cape Kennedy), Table 3 g ives  an average expected 

number E(n)  of o rganisms deposi ted i n  annular regions (with i n t e r i o r  

and e x t e r i o r  rad i i  l i s t ed  under A s )  about t h e  impact po in t .  

A s  a f i r s t  s t e p  i n  

8 
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assumes e s s e n t i a l l y  a uniform d i s t r i b u t i o n  of  organisms on t h e  space- 

c r a f t  por t ion .  

average dens i ty ,  p for  t h e  reg ion  ca lcu la ted .  

Table 3: Typical  Average Organism Density 

The a r e a ,  A, of  each annular reg ion  i s  l i s t e d  and an 

A' 

As(m) 

0.00-0.01 

0.01-0.10 

0.10-1.00 

1.00-2.00 

E(n)  

6 2 . 4 0 ~ 1 0  

1.74~10~ 
7 5.23~10 
7 1.23~10 

2 3.14~10 
4 3.11~10 
6 3.11~10 
6 9 . 4 2 ~ 1 0  

6.60~10~ 
8 2.36~10 
8 9 . 4 2 ~ 1 0  

2.36~10~' 

9 . 4 2 ~ 1 0 ~ ~  
11 1.57~10 
11 2 20x10 

6.60~10 9 

2.00-5.00 

5.00-10.00 

10.00-20.00 

Beyond about 1 2  km,  t h e  average dens i ty  of organisms i s  l e s s  than  

1 0  /cm . If one assumes a uniform fragment d i s t r i b u t i o n  a t  t h i s  

d i s t ance ,  t h e  p robab i l i t y  of r e t r i e v a l  of one of t hese  organisms per  

-6 2 

square cent imeter  of sur face  sampled i s  a l s o  considerably less than  1 0  -6 . 

6 
6 
6 

9.58~10 
3.56~10 
1.69~10 

This f i g u r e  i s  o f t e n  used as a c r i t e r i o n  for  successfu l  lunar  bio- 

l o g i c a l  explorat ion.  

of  r e t r i e v i n g  organisms deposi ted by a SLA, SIVB or I U ,  one needs 

only consider t h e  l i ke l ihood  of  r e t r i e v i n g  them wi th in  1 2  km of  t h e  

impact po in t  of any of these .  

To complete t h e  examination of t h e  l ike l ihood 
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The a c t u a l  assessment o f  t h e  p robab i l i t y  t h a t  a f u t u r e  luna r  s a r p l e  

tak ing  mission w i l l  land wi th in  12 km of a previous ly  impacted SLA 

involves many unknowns (among them such th ings  as t h e  dependence 

of t h e  SLA's l o c a t i o n  on t h e  t r a j e c t o r y  o f  t h e  mission from which 

it came and t h e  subsequent s i m i l a r i t y  between t h e  t r a j e c t o r y  o f  

t h i s  mission and t h e  sampling mission of concern).  

a second Apollo mission following t h e  f irst ,  much o f  t h i s  d i f f i c u l t y  

can be avoided by r e s t r i c t i n g  t h e  impact po in t s  of  previous mission 

elements and t h e  second mission touch-down t o  t h e  Apollo Landing 

Zone ( A L Z ) .  This becomes an approximation t o  t h e  "worst case". 

Assume t h a t  t h e  previous mission elements a r e  independent of one 

another (which i s  an incor rec t  bu t  conservat ive assumption i n  t h i s  

contex t )  and t h a t  t h e i r  impact po in t s  are randomly placed wi th in  

t h e  ALZ. Then t h e  l i ke l ihood  of encountering any of  t h e  above 

annular regions wi th in  1 2  km of SLA, SIVB o r  I U  impact po in t s  

become e s s e n t i a l l y  

Looking at only 

- Area of  annular region,  R - 
'R Area of t h e  ALZ 

Table 11 i nd ica t e s  PR for t h e  annular regions above. 

dens i ty  wi th in  t h e s e  regions P p 

r e t r i e v i n g  an organism i n  a cm2 sample i n  each region,  given t h a t  

t h e  previous mission elements SLA, SIVB, IU - d id  impact t h e  moon. 

Assuming a uniform 

gives  t h e  approximate l i ke l ihood  of R A  
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Table 4: Likelihood of Retrieval 

0.00-0.01 

0.01-0.10 

0.10-10.00 

1.00-2.00 

2 00-5.00 

5.00-10.00 

10.00-20.00 

7 * 6x10-11 

5.6~10-” 
1. ? X ~ O - ~  

-10 3.gx10 

2. ~ x ~ O - ~ O  

5.3~10-’I 

1. lxlo-lo 

The p robab i l i t y  of r e t r i e v i n g  an organism i n  a cm2 sample wi th in  a 

c i r c l e  of rad ius  20 km of t h e  impact po in t  of a SLA, SIVB or  I U  

i s  approximately t h e  sum of t h e  i tems i n  column 3 which i s  approxi- 

mately 3 ~ l O - ~ .  

t h e  SLA, SIVB or I U  per  square cent imeter  of sample on t h e  next 

Apollo mission never exceeds 1 0  , independent of  t h e  p robab i l i t y  of 

impact of t hese  mission i tems. 

Thus, t h e  l i ke l ihood  of r e t r i e v i n g  any organism from 

-6 

I V .  S t e r i l i z a t i o n  Modeling and Laboratory Support Work 

A. 

B. 

Description. This i nves t iga t ion  i s  d i r ec t ed  toward s t e r i l i z a t i o n  

modeling and support experimentation t o  t h e  ex ten t  s u f f i c i e n t  for 

confidence i n  generat ing t h e  bioengineering parameters necessary f o r  

a t t a i n i n g  p lane tary  quarant ine s t e r i l i z a t i o n  objec t ives .  

Progress.  Experimentation done t h i s  qua r t e r  suggests  t h a t  another 

environmental parameter can be added t o  t h e  growing l is t  of f a c t o r s  

in f luenc ing  dry heat s t e r i l i z a t i o n .  Our i n i t i a l  th inking  w a s  t h a t  samples 

removed from t h e  oven should be brought t o  room temperature as quickly 
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8s feas ib l e .  The r a t i o n a l e  w a s  t h a t  t h e  s t e r i l i z i n g  r eac t ions  should be 

stopped at t h e  moment samples a r e  removed. 

more spores  would be  s t e r i l i z e d  during a longer cool ing per iod.  

a comment by Saul  K i t  i n  Kine t ics  of  Thermal Degradation of  Deoxyribo- 

nuc le ic  Acid (DNA)  and Ribonucleic Acid ( R N A ) ,  Vol. 3, No. 4 ,  I3io- 

chemical and Biophysical Research Communications; namely, t h a t  both 

physicochemical and b io log ica l  evidence e x i s t  t h a t  r ena tu ra t ion  

t akes  p lace  with b a c t e r i a l  DNA prepara t ions  provided t h a t  cooling i s  

gradual ;  suggested t h a t  our i n t u i t i o n  might w e l l  be 180' out of phase. 

Therefore,  an experiment w a s  i n i t i a t e d  t o  s tudy the  e f f e c t  of  d i f f e r e n t  

cooling r a t e s .  

of t ime,  one s e t  w a s  allowed t o  cool  t o  room temperature i n  approximately 

two minutes while t h e  o ther  s e t  w a s  brought t o  room temperature i n  1 5  

seconds. The r e s u l t s ,  shown i n  Graph 1, confirm t h a t  our i n t u i t i o n  

w a s  indeed out of  phase. 

I n t u i t i v e l y ,  it seemed t h a t  

However, 

The samples were exposed a t  13S°C f o r  t h e  same per iods 

These r e s u l t s  coupled with t h e  comment by K i t  suggest an experiment, 

t o  be  underway s h o r t l y ,  f o r  t h e  purpose of i nves t iga t ing  t h e  e f f e c t  

of prolonged cool  down on microbial  su rv iva l .  This  is  p o t e n t i a l l y  

very important t o  p lane tary  quarant ine i n  t h a t  an extended cool ing 

per iod i s  ind ica ted  f o r  spacecraf t  s t e r i l i z a t i o n .  

Since a r a t i o n a l  model is  based on what i s  occurr ing phys ica l ly  and 

we deem such a model necessary f o r  a t t a i n i n g  p lane tary  quarant ine 

ob jec t ives ,  an experiment d i r ec t ed  toward t h e  goa l  of b e t t e r  under- 

s tanding t h e  nature  o f  microbial  dry heat  s t e r i l i z a t i o n  w a s  performed 



t h i s  quar te r .  It w a s  observed t h a t  t h e  a c t i v a t i o n  energies  required 

f o r  t h e  inac t iva t ion  of t y p i c a l  enzymes were from two t o  t h r e e  t i m e s  

h igher  than those  usua l ly  seen f o r  t h e  inac t iva t ion  of  DNA and RNA. 

It w a s  noted i n  QR 9 t h a t  t h e  a c t i v a t i o n  energies  found by our model 

roughly agree w i t h  i n  v i t r o  r e s u l t s  f o r  DNA-RNA. This ind ica ted  t h a t  

i f  OUT model i s  approximately c o r r e c t ,  from t h e  r a t i o n a l  viewpoint, 

then  after s t e r i l i z a t i o n  some enzymatic a c t i v i t y  should remain i n  t h e  

s t e r i l i z e d  spores.  To experimentally check t h i s  hypothesis derived as a 

consequence of t h e  model ana lys i s ,  it w a s  noted t h a t  enzymes are necessary 

i n  order t h a t  a spore become a vegeta t ive  c e l l .  The process of germination 

can be i n d i r e c t l y  observed by continuously measuring t h e  o p t i c a l  dens i ty  of 

a population of spores as it becomes a population of vege ta t ive  c e l l s .  

A population of spores is  o p t i c a l l y  much denser than an equal number of 

vege ta t ive  c e l l s .  

increases .  

A s  t h e  c e l l s  l a te r  mul t ip ly ,  t h e  o p t i c a l  dens i ty  again 

0 0 The o p t i c a l  d e n s i t i e s  of 3 x 1 0  

and an unheated sample of  3 x 1 0  spores are compared i n  Graph 2. 

Note t h a t  t h e  OD of t h e  heated sample roughly follows t h a t  o f  t h e  

unheated sample ( a f t e r  an i n i t i a l  l a g )  u n t i l  germination begins i n  t h e  

unheated case.  For t h e  reasons out l ined  above, t h i s  may be in t e rp re t ed  

as an ind ica t ion  t h a t  enzyme deac t iva t ion  i s  not a major f a c t o r  i n  dry 

heat  s t e r i l i z a t i o n .  

spores heated f o r  60 minutes at 135 C 

a 

Computer computations were performed t o  study t h e  e f f e c t  o f  prolonged 

hea t ing  a t  reduced temperature l e v e l s  and t o  inves t iga t e  t h e  consequences 
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of slow heat up and cool  down. 

were those  of Q,R 9 i n  which t h e  base l i n e  da t a ;  su rv iva l  d a t a  a t  

l25OC, 1 3 5 O C  and 1 4 5 O C ;  were from tests i n  which t h e  samples were 

cooled t o  room temperature i n  1 5  sec. Thus, t h e  previously mentioned 

consequence of r ap id  cooling is  i n  e f f e c t  and t h e  r e s u l t s  of t hese  

computations would not apply d i r e c t l y  t o  spacecraf t  s t e r i l i z a t i o n .  

r e s u l t s  of  t hese  computations are given i n  Graphs 3 and 4. 

The parameters used i n  these  computations 

The 

Based upon t h e  model pred ic t ions  given i n  Graph 3 t h e r e  is  t h e  suggestion 

t h a t  heat ing at a reduced l e v e l  f o r  an extended period of t i m e ,  on t h e  

order of f i v e  t o  t e n  days depending on t h e  temperature,  could be 

e f f e c t i v e  i n  a t t a i n i n g  s t e r i l i z a t i o n  objec t ives .  

I n  examining t h e  t h e o r e t i c a l  e f f e c t s  of heat  up and cool  down t imes,  

t h r e e  temperature p r o f i l e s  were used. I n  each case,  t h e r e  w a s  a l i n e a r  

heat  up and cool  down period between 6ooc and 125OC: The d i f fe rences  

a r i s i n g  i n  t h e  amounts of t i m e  taken t o  heat  up t o  and cool  down from 

125OC and t h e  t i m e  spent at 125OC. 

ca lcu la t ions .  I n  a l l  cases ,  no appreciable  decrease i n  population is  

observed when t h e  temperature i s  below t h e  range of 100 C t o  l o 5  C .  

I n  a l l  cases ,  t h e  number of survivors  i s  proport ional  t o  t h e  t o t a l  heat  

( " in tegra ted  l e t h a l i t y " )  t o  which t h e  organisms were exposed. 

Graph 4 shows t h e  r e s u l t s  of t h e s e  

0 0 

17 



TIME - M1NliTF.S 

Slow cool down of sample vs. f a s t  cool down 
0-0 

A-A 

indicate  curve resulting from rapid cooling 
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Graph 1 

18 



cal dens 

Time i n  minutes 
ty o f  heated ant! Linheatcd samples. 

------ llcated sample 

Unheated sample 

Graph 2 



Effect o f  prolonged exposure a t  low temperature 

Time of exposure i n  hrs 

Curve Temp 
A 60° c 
B 30°C 
C 1 OOOC 

Graph 3 
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